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Abstract. Based on the nonlinear Lie algebra, a new framework is put forward to treat the
problem of angular momentum. From this framework, the ladder operators for the orbital angular
momentum can be solved as simultaneous eigenvectors of the Lie derivations ad(L2) and ad(Lz)
in an operator space. The ladder operators for solvable central potentials can also be found in a
united way.

1. Introduction

In recent years, the generalized nonlinear deformations of Lie algebra (includingq-deformation
Lie algebra [1, 2] as a special case) have attracted a lot of attention. The deformed oscillator
algebra as well as the deformed su(2) and su(1, 1) algebras have been discussed by many
authors [3–6]. Furthermore, Quesne studied the nonlinear extension of the angular momentum
algebra [7]. Recently, we find that the angular momentum itself has naturally a closed nonlinear
Lie algebra structure, which is generated by the square of the angular momentum operator,
its component and the ladder operator. This nonlinear Lie algebra can be described by two
eigenequations in the operator space. Their simultaneous eigenvector operators are the ladder
operators for the angular momentum, and the corresponding eigenvalue operators, which
determine the differences of eigenvalues of the angular momentum, can be called ladder-
value operators. This new framework based on the nonlinear Lie algebra not only gives a new
treatment of angular momentum, but also provides a unified way to deal with the eigenvalue
problem of the central fields.

2. Nonlinear Lie algebra for orbital angular momentum

For simplicity, we consider here only the orbital angular momentum operatorL = r×pwhose
Cartesian componentsLi , i = x, y, z obey the commutation relations [Li, Lj ] = iεijkLk (in
this paper, we take the natural unit system). It is obvious that

[L2, Lz] = 0. (1)
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Thus, the operatorsL2 and Lz have simultaneous eigenkets|l, m〉, corresponding to the
eigenvaluesµl andνm respectively, that is

L2|l, m〉 = µl|l, m〉
Lz|l, m〉 = νm|l, m〉.

(2)

According to its physical meaning, the ladder operator can map one eigenket of the operators
L2, Lz onto another one, therefore, a ladder operatorXs,t for L2 andLz should possess the
following property:

Xs,t |l, m〉 = Cs,t |l + s,m + t〉 (3)

wheres , t = −1, 0,+1 , andCs,t are proportionality factors. From equation (3), it is not
difficult to show that

[L2, Xs,t ]|l, m〉 = (µl+s − µl)Xs,t |l, m〉
[Lz,Xs,t ]|l, m〉 = (νm+t − νm)Xs,t |l, m〉.

(4)

For convenience, we define two difference functions of the eigenvalues of angular momentum
operators as follows:

Fs(µl) = µl+s − µl
Gt(νm) = νm+t − νm.

(5)

It is easy to verify, from the completeness of the set{|l, m〉}, that

[L2, Xs,t ] = Xs,tFs(L2)

[Lz,Xs,t ] = Xs,tGt (Lz)
(6)

whereFs(L2) andGt(Lz) should be called ladder-value operators for the observablesL2 and
Lz since their eigenvalues are just the differences of eigenvalues for the same observables.
The above equations combined with equation (1) show that the orbital angular operatorsL2,
Lz and any one of their ladder operatorsXs,t generate a closed nonlinear Lie algebra. This
nonlinear Lie algebra differs from the usual deformed Lie algebras in [4]. The latter has a
Cartan subalgebra of dimension one; however, the former has a Cartan subalgebra of dimension
two. According to the theory of Lie algebra [8], equations (6) can be viewed as eigenequations
of the Lie derivations ad(L2) and ad(Lz), namely,

ad(L2)X = XF
ad(Lz)X = XG

(7)

but here,F andG take values in an operator space generated byL2 andLz. After solving these
equations, we can obtain the ladder operators and the corresponding ladder-value operators
for L2 andLz, then the eigenvaluesµl andνm can be determined.

3. Ladder operators for the orbital angular momentum

In order to solve the eigenvalue equations of ad(L2) and ad(Lz) in the operator space, we will
give two useful theorems in the following.

Theorem 1. If N = (Nx,Ny,Nz) is any vector operator, that is

[Lj ,Nk] = iεj,k,lNl (8)

and the operator function

Xs = [ 1
2NF

2
s + iN × LFs − 2(N · L)L]C s = 0,±1 (9)
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whereF0 = 0 , F±1 = 1±
√

1 +L2 andC is an arbitrary operator commutative withL2, then
the following eigenvalue equation in operator space holds:

ad(L2)Xs = Xs · Fs. (10)

Proof. For any vector operatorN defined in equation (8), we have

ad(L2)N = 2N + 2iN × L
ad(L2)iN × L = 2 ·N · L2 − 2(N · L)L
ad(L2)(N · L)L = 0.

(11)

The above equations imply that the operatorsN and iN × L and (N · L)L span a nine-
dimensional invariant subspace of ad(L2). In this subspace, the eigenvector of ad(L2) can be
expanded as

X = N · C1 + iN × L · C2 + (N · L)L · C3 (12)

where the coefficientsC1, C2 andC3 are, in general, operators commutative withL2. Putting
X into equation (10) and using the relations (11), we obtain a set of linear algebraic equations
for the coefficientsCj as follows:( 2, 2L2, 0

2, 0, 0
0, −2, 0

)(
C1

C2

C3

)
=
(
C1

C2

C3

)
F. (13)

The corresponding secular equation is∣∣∣∣∣ 2− F, 2L2, 0
2, −F, 0
0, −2, −F

∣∣∣∣∣ = 0. (14)

Solving equation (14), one obtains three eigenvalues

F0 = 0 F±1 = 1±
√

4L2 + 1. (15)

From the eigenvalue operators obtained above, we easily getC1 : C2 : C3 = F 2/2 : F : 1 for
anyF = Fs, s = −1, 0, 1. �
Corollary. If N = (Nx,Ny,Nz) is any vector operator satisfying equation (8) and the scalar
productN · L = 0, then the operator function

Xσ (N) = 1
2NFσ + iN × LFσ σ = ±1 (16)

satisfies the following eigenvalue equation

ad(L2)Xσ (N) = Xσ (N)Fσ . (17)

Theorem 2. If A = (Ax,Ay,Az) andB = (Bx, By, Bz) are two vector operators andα, β, γ
are three arbitrary scalar operators, which commutate withL, then the operator

Y = Aα +Bβ + iA×Bγ (18)

is a vector operator and the spherical components ofY satisfies the following eigenvalue
equation in operator space

ad(Lz)Yt = Yt t t = 0,±1 (19)

whereY0 = Yz andY±1 = Yx ± iYy .
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Proof. Sinceα, β, γ are scaler operators, it is easy to verify that [Lj , Yk] = iεj,k,lYl . Thus we
have

[Lz, Y0] = 0

[Lz, Y±1] = ±Y±1

the above result is the same as equation (19). �
Using the above theorems, it is not difficult to solve the equations (7). First, according to

theorem 1, we may obtain three eigenvalue operators of ad(L2), i.e. the ladder-value operator
Fs (s = 0,±1) and the corresponding eigenoperatorsXs . Since each of the ladder operators
Xs has three components, the ladder-value operatorsFs are all three-fold degenerate. Then
we can solve the eigenvalue equation (7) in each subspace spanned by the ladder operators that
belong to the ladder-value operatorFs . According to theorem 2, the ladder operatorsX are
vector operators, the spherical componentsXs,t of Xs are also the eigen operators of ad(Lz),
corresponding to the eigenvalue operatorsGt = t (t = 0,±1). Thus, we obtain altogether
nine ladder operators and the corresponding ladder-value operators as listed in the following
table:

G0 = 0 G±1 = ±1
F0 = 0 X0,0 = X0,z X0,±1 = X0,x ± iX0,y

F±1 = 1±
√

4L2 + 1 X±1,0 = X±1,z X±1,±1 = X±1,x ± iX±1,y

in which the operatorX0,0 is not a ladder operator in the strict sense.
Since the operatorN in theorem 1 is an arbitrary vector operator, there are infinitely many

vector ladder operatorsXs for a given ladder-value operatorFs of ad(L2). For simplicity, we
chooseN = L andC = 1/L2 for j = 0, andN = n (n = r/r) andC = 1/Fj for
j = σ = ±1. Thus, using the corollary, we have

X0 = L
Xσ = 1

2nFσ + in× L (20)

or

G0 = 0 G±1 = ±1
F0 = 0 X0,0 = Lz X0,±1 = L±

Fσ = 1 +σ
√

4L2 + 1 Xσ,0 = nz(Fσ /2 +Lz) + n−L+ Xσ,±1 = n±(Fσ /2± Lz)∓ nzL±
According to equation (5), the recurrence formula ofµl can be obtained directly from the

ladder-value operatorsF±1(L
2), that is

µl±1 = µl + 1±
√

4µl + 1. (21)

The general term corresponding to above equation is

µl =
(√

µ0 + 1
4 + l

)2

− 1
4 (22)

where the eigenvalueµ0 = 0 can be obtained from the condition

X−1|0, 0〉 = 0 or 〈0, 0|X†
−1 ·X−1|0, 0〉 = 0. (23)

Thus, we have

µl = (l + 1
2)

2 − 1
4 = l(l + 1). (24)

This result exactly agrees with the known eigenspectrum ofL2. Similarly, fromG = 0,±1,
one can show that

νm = ν0 +m. (25)
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Considering the conditionL−|l,−l〉 = 0, we getν0 = 0.
ReplacingFσ in equations (20) with its eigenvalues, we obtain

Xσ,0 = nz(fσ +Lz) + n−L+

Xσ,±1 = n±(fσ ± Lz)∓ nzL±
(26)

wherefσ equalsl + 1 or−l, namely one half of the eigenvalue of the ladder-value operator
Fσ (L

2). It is easy to verify that the component operatorsXσ,0, Xσ,σ andXσ,−σ are just the
same as the ladder operatorsB±l , C±l andD±l constructed in [9], but our results are more
natural and concise.

Using equations (26) and the normalization condition, we can calculate the coefficients in
the equation (3) as

|Cσ,t |2 = 〈l, m|X†
σ,tXσ,t |l, m〉 =

2l + 1

2l + 2σ + 1
×


(fσ +m)(fσ +m + 1) t = 1

(fσ +m)(fσ −m) t = 0

(fσ −m)(fσ −m + 1) t = −1.

(27)

4. Comparing with the linear theory

As we know, the linear Lie algebra associated with the orbital angular momentum is so(3).
From the linear so(3) Lie algebra, the ladder operatorsL± can be derived. However, these two
ladder operatorsL± can only shift the quantum numberm in the ket|l, m〉. To construct the
ladder operators which can shift the quantum numberl, we need a larger linear Lie algebra
so(3, 2)with 10 generatorsLj ,Xj ,Yj andS [10]. These operators close under the commutation
relations

[Lj , Lk] = iεjklLl [Lj ,Xk] = iεjklXl
[Lj , Yk] = iεjklYl [Lj , S] = 0

[Xj,Xk] = −iεjklLl [Xj, Yk] = −iδjkS

[Xj, S] = −iYj [Yj , Yk] = −iεjklLl
[Yj , S] = iXj .

(28)

It is obvious that the framework based on the linear Lie algebra is too complicated to be widely
applied.

In contrast, according to our framework, which is based on the nonlinear Lie algebra, all
the ladder operators for orbital angular momentum can unitedly be found from equations (7).
This set of equations is very concise and can easily be solved by use of the theorems in
section 3. Moreover, for any given ladder-value operators, we can construct various ladder
operators depending on the given vector operatorN . This property enables our method to be
easily applied to the centrally symmetric fields. In the next section, we will give some typical
examples.

5. Applications for the centrally symmetric fields

5.1. Free particle

For a free particle, the Hamilton operator is

H = p2/2. (29)
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Thus, the operatorsH ,L2 andLz have simultaneous eigenkets{|k, l,m〉}, where the parameter
k = √2E is the wavevector. Replacingn in equation (20) with the momentum operatorp ,
which satisfies the conditionp · L = 0, we obtain the vector ladder operatorsXσ (p) for the
free particle as follows:

Xσ (p) = pFσ/2 + ip× L. (30)

Hence, the component ladder operatorsXσ,t (p) are

Xσ,0(p) = pz(Fσ /2 +Lz) + p−L+

Xσ,±1(p) = p±(Fσ /2± Lz)∓ pzL±.
(31)

It is not difficult to show that these operators satisfy equation (7) and the commutation relation
[H,Xσ,t (p)] = 0. The following equation, therefore, holds

Xσ,t (p)|k, l,m〉 = Cσ,t (p)|k, l + σ,m + t〉 (32)

where the coefficientCσ,t (p) = k Cσ,t (Cσ,t is defined by equation (27)). Obviously, the above
equation gives some useful recurrence relations for the spherical wavefunctions.

5.2. Hydrogen-like atom

In the case of the hydrogen-like atom, we have

H = p2/2− 1/r. (33)

Replacingn in equation (20) with the Runge–Lenz–Pauli vector operatorR defined by

R = n + 1
2(L× p− p× L) (34)

which is a conservative operator and satisfiesR ·L = 0, we obtain the vector ladder operators
Xσ (R) for the hydrogen-like atom

Xσ (R) = RFσ/2 + iR× L. (35)

Similarly, the component ladder operatorsXσ,t (R) can be found as follows

Xσ,0(R) = Rz(Fσ /2 +Lz) +R−L+

Xσ,±1(R) = R±(Fσ /2± Lz)∓ RzL±.
(36)

These ladder operators commute with the Hamilton operatorH , and possess the following
property:

Xσ,t (R)|n, l,m〉 = Cσ,t (R)|n, l + σ,m + t〉 (37)

where the coefficientCσ,t (R) =
√
(n2 − f 2

σ )/n
2Cσ,t , n is the energy quantum number and

{|n, l,m〉} are the simultaneous eigenkets of the operatorsH , L2 andLz.

5.3. Three-dimensional isotropic harmonic oscillator

In this case, we have

H = p2/2 + r2/2. (38)

In the same way, replacingn in Xσ (n) by the energy ladder operatorsa± = (r ∓ ip)/
√

2,
we obtain four vector ladder operators for the three-dimensional isotropic harmonic oscillator

Xσ (a±) = a±Fσ/2 + ia± × L (39)

and the component ladder operatorsXσ,t (a±) can be obtained as in the previous cases. These
ladder operators possess the property

Xσ,t (a±)|n, l,m〉 = Cσ,t (a±)|n± 1, l + σ,m + t〉 (40)

where the coefficientCσ,t (a±) =
√
n + 1± 1 +fσ Cσ,t andn is the energy quantum number.
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6. Discussion and conclusion

6.1. Radial ladder operators

Recently, the radial ladder operators are constructed for the hydrogen atom and isotropic
harmonic oscillator by use of the factorization in a systematic way [11]. In the following,
we will show that their basic radial ladder operators are physically equivalent to the radial
components of our vector ladder operators.

For the hydrogen-like atom, we have

Xσ,r(R) = n ·Xσ (R) =
(

ipr − Fσ
2r

+
2

Fσ

)(
Fσ

2

)2

(41)

wherepr = (n · p +p ·n)/2 is the radial momentum operator. ReplacingFσ in equation (41)
with its eigenvalue 2fσ and omitting a constant factor, we obtain

Xσ,r(R) = ipr − fσ
r

+
1

fσ
. (42)

The result is the same as the radial ladder operatorR±l in equation (5.78) in [10]. Obviously,
the action of the radial ladder operatorsA(l ↑) andA(l ↓) in [11] on the modified radial
wavefunctionsχl(r) are equivalent to that of the radial componentsX±1,r (R) on the radial
wavefunctionsRl(r) = χl(r)/r, respectively.

As for the three-dimensional isotropic harmonic oscillator, we have

Xσ,r(a±) = n ·Xσ (a±) = [ipr ∓ r − Fσ/(2r)](Fσ /2). (43)

ReplacingFσ in equation (43) with its eigenvalue and omitting the constant factor, we obtain

Xσ,r(a±) =′ ipr ∓ r − fσ
r
. (44)

Similarly, the radial ladder operatorsB(l ↑, E ↑) ,A(l ↓, E ↑) ,A(l ↑, E ↓) andB(l ↓, E ↓)
in [11] are equivalent to the radial componentsX±,r (a±) respectively.

6.2. One-dimensional quantum system

Our method put forward in this paper can also be applied to the one-dimensional quantum
system. In the following, we will give a typical example.

For symmetric Poschl–Teller potential, the Hamiltonian of the system is

H = p2/(2m) + V0 tan2(kx) x ∈
(
− π

2k
,
π

2k

)
. (45)

Suppose|n〉 is an eigenket with the eigenvalueEn, that is

H |n〉 = En|n〉 (46)

andA± is the raising or lowering operator, namely

A±|n〉 = C±|n± 1〉 (47)

then from equations (46) and (47), we have

[H,A±]|n〉 = (En±1− En)|n〉. (48)

For convenience, we define two difference functions of the eigenvaluesEn as follows

1±(En) = En±1− En. (49)

From the completeness of the set|n〉, we have

[H,A±] = A±1±(H). (50)
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Similarly, with the help of the commutation [x, p] = ih̄, we can get the ladder-value operators

1± = εI ± 2
√
ε(H + V0) (51)

whereI is the unit operator andε = h̄2k2/(2m). Thus, a recurrence formula of the eigenvalue
spectrum can be written as

En+1 = En + ε + 2
√
ε(En + V0). (52)

The above result is the same as the known result in [6].
It is obvious that our framework based on the nonlinear Lie algebra is more advantageous

than that based on the factorization method. The idea we put forward in this paper can also be
applied to the other quantum problems.
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